TPACK Skills of Pre-service Teachers in Technology Integration: A Study in Microteaching Class

Pipit Firmanti¹, Fauzi Yuberta², Yoppy Wahyu Purnomo³, Fery Muhamad Firdaus⁴,

^{1,2,3}Universitas Negeri Yogyakarta, Indonesia ⁴Sekolah Tinggi Pertanahan Nasional, Indonesia ¹pipitfirmanti.2024@student.uny.ac.id

Abstract

The integration of technology in mathematics education is a tangible manifestation of the rapid development of the times. Therefore, teachers must use technological devices to ensure students stay competitive in the global arena. This study aims to describe the distribution of TPACK skills among pre-service mathematics teachers and monitor their development during their microteaching experiences. This research is a qualitative descriptive study. The participants in the study were eleven students at UIN Sjech M Djamil Djambek Bukittinggi who were taking a microteaching course in the even semester of 2023/2024. The instruments used were the TPACK questionnaire and observation sheets. Based on the observation, in the first session, some subjects were unable to use or operate the software they had downloaded, and many quiz applications encountered problems because they could not be opened. The challenges faced included paid software and issues operating the software on different laptops. It is suspected that one student did not attend because she was not prepared to present. Additionally, the development of skills for each TPACK aspect generally showed improvement in subsequent sessions. The subjects generally used presentation slide applications such as Microsoft PowerPointTM and CanvaTM to explain the material and conducted evaluations by giving quizzes through applications such as QuizizzTM, KahootTM, WordwallTM, and BamboozleTM. The results show that the students' skills based on the TPACK Questionnare were at a moderate level with an average score of 3.38. However, there are differences between the results of the questionnaire and the observations carried out. For instance, in the aspect of Technological Pedagogical Knowledge especially for item "I can utilize available technologies as a learning aid". The questionnaire showed a high rating 3.63. On the other hand, observations indicate that students' abilities are still lacking, indicating that students have much to learn, especially in the use of technology in the learning process to enhance the learning environment in mathematics

Keywords: TPACK, technology integratu, mathematics education

Introduction

Technological advancements impact all aspects of life, including education. Various types of technology can be used as tools to assist teachers in delivering instructional material. Technology has become integral to modern education, including mathematics instruction. Moreover, a strategy is needed to improve learning outcomes and provide a systematic support to the instructional work of teachers, such as the Italian LSA approach namely 'the integration of technologies in teaching with Learning Solutions Approach (Gentile & Pisanu, 2013). In addition, the approach conducted by Jenita et al. (2023) shows an increase in motivation and enthusiasm for learning and a stronger commitment to the development of technology-based education. (Jenita et al., 2023). In other words, technology integrated into the learning process is expected to help develop conceptual understanding of student (Putrawangsa & Hasanah, 2018), so that the knowledge acquired is cohesive and not fragmented. For instance, applying Computer-Based Mathematics Learning significantly affects students' mathematical abilities (Tamur et al., 2023). Subsequently, the use of technology has become a daily habit for education students, reflecting the significant integration of technology into their learning experience (Meisuri et al., 2023).

Pre-service mathematics teachers must have a holistic skill set, including integrating technology effectively. Effective technology integration should not be facilitated as a standalone event, focusing solely on technical skills (Tondeur et al., 2017). The TPACK framework describes the kinds of knowledge that teachers need in order to teach with technology, and the complex ways in which these bodies of knowledge interact with one another (Koehler et al., 2013). In other words, this framework integrates technological knowledge, content, and pedagogy within specific teaching and learning contexts. TPACK stands for Technological Pedagogical Content Knowledge, which refers to three dimensions: technology (T), pedagogy (P), and content (C) knowledge. Nowadays, TPACK has become popular for integrating ICT mathematics education.

This framework is crucial for developing the pedagogical competencies of 21st-century teachers. The traditional classroom teaching space is now designed as a technology-based learning environment to create an effective students learning process. (Oktaviana & Yudha, 2022). The TPACK framework provides a map for understanding how to effectively integrate technology and instructional strategies into the content effectively (Rohmitawati, 2018).

More specifically, TPACK can be described as follows: (i) Technological Knowledge (T): Knowledge about relevant technology and how to use it effectively in a learning context, (ii) Pedagogical Knowledge (P): Knowledge about principles and strategies of effective teaching to help students understand the subject matter, (iii) Content Knowledge (C): Knowledge about the specific subject matter to be taught(Schmidt et al., 2014). Finally, TPACK is the intersection of all the three knowledge areas (TK, CK, and PK) (Omoso & Odindo, 2020). Teachers are able to use technology appropriately and effectively to support student learning in understanding mathematical content (or other subject areas). Moreover, teachers are also able to develop innovative and adaptive teaching strategies tailored to their needs and learning contexts. This is in line with research conducted by (Amrina et al., 2022), which analyzed TPACK in relation to the ability to develop online mathematics teaching materials among prospective primary school teachers. The study found that prospective teachers with high TPACK abilities have a positive influence on their ability to create online mathematics teaching materials.

TPACK indicators also emphasize the creation of meaningful learning experiences to enhance students' conceptual understanding and develop their intuition in mathematics (Putrawangsa & Hasanah, 2018). Although students have received theoretical foundations in their educational curriculum, practical implementation in teaching still requires further development. Additionally, (Sholeh & Efendi, 2023) state that teachers need to identify and address learning challenges by integrating appropriate technology into the teaching process. The ability of pre-service teacher students to integrate technology can also be observed through TPACK components in microteaching classes.

Microteaching is a program that is included in the curriculum of the education department (Saliman et al., 2017; Satriawati et al., 2022) to strengthen pre-service teacher's teaching skills (Mukuka & Alex, 2024; Blegur et al., 2023). In addition, students can also use various learning methods in this course (Siregar, 2021). Microteaching is an effective method for observing and improving teaching practices on a smaller scale. In general, this course is taken by pre-service teachers in their third year and is worth two to four credits. UIN Sjech M Djamil Djambek Bukittinggi, for instance, has four credits. Through microteaching, pre-service teachers can test and enhance their ability to integrate technology into mathematics instruction, thereby optimizing the learning process for the future.

There is a research gap concerning how to measure primary mathematics teachers' TPACK, how to design a TPACK instrument that includes contextual factors, and how to develop TPACK-oriented teacher training programs for primary mathematics teachers (Li et al., 2024). Meanwhile, research conducted by Faradilla & Putra (2024) shows that pre-service

mathematics teachers tend to have TPACK at a moderate level. However, it does not provide detailed information on students' abilities in each aspect of TPACK. In addition, some research conducted on the TPACK abilities of prospective teacher students through micro teaching only used three indicators: Technological Knowledge, Content Knowledge and Pedagogical Knowledge. (Farida & Kusumawati, 2024; Satriawati et al., 2022). Therefore, the research is needed to describe TPACK capabilities using questionnaire and direct observations with full indicators.

Based on the above description, the research problem in this study is: What is the distribution level of TPACK abilities among pre-service mathematics teachers in integrating technology during microteaching classes? Additionally, this study aims to describe the distribution level of TPACK abilities among pre-service mathematics teachers and monitor their development during microteaching courses.

Methodology

This study is a type of qualitative descriptive research. The research subjects consist of one microteaching class, Class F, Academic Year 2024/2025, which includes eleven students. The sampling of Class F was done because the students have an average level of mathematical ability that is already good, allowing the subjects to be guided in using technology in their teaching practice. The instruments used are TPACK questionnaires and observation sheets. An additional way to measure TPACK is through observations of teacher-enacted lessons. The seven TPACK components and their aspects in more detail can be seen in Table 1.

Table 1. TPACK Instrument for 21st Century Skills (Herizal et al., 2022)

Component	Aspect		
Technological Knowledge (TK)	Understanding various technological elements, including the use of technology, technological developments, and internet-related aspects.		
Content Knowledge (CK)	Mastering the facts, concepts, principles, and procedures of a mathematics topic.		
Pedagogical Knowledge (PK)	Understanding learning theories, students' cognitive development, and how to apply these in the classroom to support 4C skills.		
Pedagogical Content Knowledge (PCK)	Able to relate learning theories to mathematics content that supports 4C skills.		
Technological Content Knowledge (TCK)	Able to integrate technology with various mathematics content.		
Technological Pedagogical Knowledge (TPK)	Able to integrate technology into lesson planning, teaching implementation, and assessment of mathematics instruction that is appropriate for students.		
Technological Pedagogical Content Knowledge (TPCK)	Able to integrate technology effectively into the planning, implementation, and evaluation of instruction to facilitate teaching mathematics content that aligns with students' characteristics.		

The questionnaire instrument was adopted from Murtiyasa & Atikah, (2021) and consists of 35 statements covering all aspects of TPACK, with response options including Excellent (5), Good (4), Adequate (3), Inadequate (2), and Very Inadequate (1). This is because the questionnaire has been validated and tested so that each item is valid and reliable. Therefore, the items for each TPACK indicator are clear and detailed. Furthermore, the questionnaire results obtained later for each TPACK indicator will be grouped into five categories with the following interpretations: Very High (4.51 - 5.00), High (3.51 - 4.50), Moderate (2.51 - 3.50), Low (1.51 - 2.50), and Very Low (1.00 - 1.50) (Nuangchalerm, 2020).

The techniques used to collect data during the research are from questionnaires and observation results. Furthermore, the analysis technique uses stages, namely data reduction, data presentation, and drawing conclusions (Sugiyono, 2014).

Subsequently, the research and observations were conducted over 4 sessions. In the first session, tasks related to the application of technology in teaching were assigned (e.g., summarizing material, determining the type of ICT to be used, and specifying the content). In the second session, subjects practiced teaching P1 (initial instruction on the selection of different types of ICT). In the third session, subjects practiced teaching P2 with different material, but the type of technology remained the same. In the fourth session, subjects practiced teaching P3 with different material, but the type of technology remained the same.

Results and Discussion

The Data of TPACK

Subjects were given a TPACK questionnaire to describe their ability to integrate technology. This can be seen from the distributed questionnaires. The initial data of the students can be found in Table 3 below:

Table 2. Student Abilities Based on TPACK

No	Aspect of TPACK	Average Score	n	Category
1	Technological Knowledge (TK)	3.47	11	Moderate
2	Content Knowledge (CK)	3.44	11	Moderate
3	Pedagogical Knowledge (PK)	3.36	11	Moderate
4	Pedagogical Content Knowledge (PCK)	3.31	11	Moderate
5	Technological Content Knowledge (TCK)	3.47	11	Moderate
6	Technological Pedagogical Knowledge (TPK)	3.27	11	Moderate
7	Technological Pedagogical Content Knowledge (TPCK)	3.33	11	Moderate
	The average	3.38	11	Moderate
	Standar deviation	0.075		

Based on Table 3 above, it can be concluded that the students' abilities based on TPACK are in the moderate category, with an average score of 3.38. The highest ability is in the TK category, with a score of 3.47, while the lowest is in the TPK category, with a score of 3.27.

Description of Framework TPACK

Technological Knowledge (3,47/ Moderate Level)

The subjects' ability to understand various technological elements, including the use of technology, technological developments, and internet-related aspects, can be observed from the selection of the types of technology used in teaching. The types of technology used in the teaching process include videos downloaded from YouTubeTM/QuipperTM at the beginning of the lesson and PowerPointTM presentations created with CanvaTM to explain the material.

In addition, the mathematics software used includes MapleTM, GeoGebraTM, and Microsoft MathematicsTM. Meanwhile, applications used at the end of the lesson for conducting quizzes include QuizizzTM, BamboozleTM, WordwallTM, and KahootTM. Some students also created websites containing material, quizzes, and other resources as part of the teaching

process. For a clearer view of the types of technology chosen by the subjects, please refer to Table 3 below:

Table 3. Types of Technology Used in Session 1 (P1)

No	Type of Technology	Frequency	Percentage
1	Maple TM	1	5.88
2	GeoGebra TM	2	11.76
3	Microsoft PowerPoint TM	1	5.88
4	Canva TM	3	17.65
5	Microsoft Mathematics TM	1	5.88
6	Website	1	5.88
7	Video YouTube TM	1	5.88
8	$Quiziz^{TM}$	4	23.53
9	$Kahoot^{TM}$	1	5.88
10	Quiz (wordwall TM)	1	5.88
11	Bamboozle TM	1	5.88
	Total	17	100

In the first session, some subjects were unable to use or operate the software they had downloaded, and many quiz applications encountered problems because they could not be opened. The challenges faced included paid software and issues using the software on different laptops. It is suspected that one student did not attend because the student was not prepared to present. In the subsequent sessions, the students' performance improved compared to the earlier sessions. In the final session, the students generally used PowerPointTM presentations designed with CanvaTM. Some of them started to use the PowerPointTM presentations effectively and comfortably.

Content Knowledge (3,44/ Moderate Level)

Before explaining the material, subjects were expected to master the facts, concepts, principles, and procedures of a mathematics topic. However, in practice, there were some concepts that the subjects had not fully grasped. This led to conceptual errors during the explanation of the material. For example, when teaching the topic of Systems of Linear Equations in Two Variables, the subject directly provided example problems using variables x and y, then applied the elimination and substitution methods to find the solutions. The problems were not preceded by contextual or other introductory problems. For a clearer view, please refer to Table 4 below:

Table 4. Description of TPACK Framework Results for the CK Aspect

Subject number	Material Learning	Results of Observation P4
1	Set	Subject understood the definition of a set and she explained to student well.
2	Integral	The subject was aware of the benefits of studying integrals. However, the subject did not understand the definition of integrals, which resulted in difficulty when explaining the material directly, even when providing a definite integral formula.
3	Linear Programming	Subjects can relate linear programming material to contextual problems.
4	Derivative	The subject understood the rules of the first derivative of algebraic functions for multiplication operations in the form of u and v. However, the subject is still confused about determining whether u.v and v.u.
5	Measure of central tendency	The subject defined mode, median and mean using formulas without the benefit of studying the material in question.

6	Trigonometry	The subject defined trigonometric ratios by writing formulas, without
		further understanding the meaning of the rules.
7	Matrix	The subject understood the matrix subtraction material and can
		differentiate between facts, principles, concepts and procedures.
8	Quadratic function	The subject understood the quadratic function material and can
		differentiate between facts, principles, concepts and procedures. The
		subject also constructed challenging questions, for example why the
		value of a cannot be zero in the case of a quadratic function?
9	One variable linear	The subject defined one variable linear equation by writing formulas,
	equation	without further understanding the meaning of the rules.
10	Quadratic equation	Subject has excellent skills in understanding and explaining the
	•	general form of quadratic equations.
11	Direct proportion	The subject defined direct proportion by writing formulas, without
	1 1	further understanding the meaning of the rules.

Based on Table 5, the information indicates that the material taught by each subject should not be the same. The material selected is from junior and high school levels, with varying degrees of difficulty. In the final session, the subjects received guidance and suggestions from previous sessions. However, there remains a percentage of subjects, specifically the 36.36%, who made errors in explaining concepts or providing formulas directly without clarifying their meaning (2,5,6,11).

Pedagogical Knowledge (3,36/Moderate Level)

The subjects' ability to understand learning theories, cognitive development of students, and how to apply these in the classroom is reflected in their choice of appropriate teaching models or strategies for specific content. In the first session, the subjects experienced anxiety and remained focused on technology, which led to a lack of mastery over the steps of the teaching model or strategy to be used in practice. The subjects appeared to interact less with the students, with their gaze and body movements primarily directed at the blackboard. However, in subsequent sessions, the subjects' abilities improved. Additionally, the subjects were guided to design lesson plans (RPP) and determine the teaching strategies or models to be used. Details of the teaching strategies employed can be found in Table 5.

Table 5. Description of TPACK Framework Results for the PK Aspect

Subject	Learning Models/Methods	Results of Observation P4		
number				
1	Problem Based Learning	Subject begins learning by checking students' understanding through questions about concepts.		
2	Demonstration	The subject has poor explanation skills. Apart from that, interaction with students is also very limited. The subject only explained the writing on PowerPoint TM without developing new ideas and demonstrating them		
3	Connecting, Organizing, reflecting and Extending (CORE)	Subject has good classroom management skills and teach according to the CORE Steps		
4	Discovery Learning	Subject uses the discovery learning method via online using Google Classroom		
5	STAD	The subject interacted a lot with students and the voice intonation and body gestures used were appropriate for using the STAD type cooperative model.		
6	Discussion	Subjects has classroom management skills that need to be improved because discussion methods during the learning process are not yet visible.		

7	Lecatoring, Discussion,	Voice intonation and subject emphasis on variations
	question & answer method	skills are appropriate, but interaction with students is
		still limited
8	Discovery Learning	The subject has already good class mastery and is in
		accordance with the steps in discovery learning
9	PBL	The subject starts the lesson in a sitting position, so the
		lesson is less interesting even though the teacher's
		intonation is appropriate
10	Cooperative Learning:	The subject has already good explanation skills. This
	Talking Chips	can be seen from interactions with students,
	8 1	apperception, gestures and body expressions in using the
		Talking Chips cooperative model.
11	PBL	The learning steps are appropriate but the intonation is
11	122	too fast, so that parts of the concept that need emphasis
		are not visible.
		are not visione.

Based on Table 6, Subject 10 used Cooperative Learning: Talking Chips. According to Huda (in Sarifa et al., 2021), talking chips learning model is an example of various cooperative methods that can be adjusted to the understanding of the concept. This learning model is a learning technique designed for discussion.

Pedagogical Content Knowledge (3,31/Moderate Level)

The suitability between pedagogical skills and the subject's understanding of the material to be taught needs further description. The subjects' ability to emphasize key aspects in teaching mathematics was, at the outset, insufficient. However, improvement was observed in subsequent sessions.

Table 6. Description of TPACK Framework Results for the PCK Aspect

Subject number	Observation indicator	Results of Observation
		P4
1	Problem Based Learning as a strategy for investigating	Appropriate
	the definition of sets	
2	The demonstration method is not visible in explaining	Inappropriate
	the concept of definite integrals	
3	Connecting, Organizing, Reflecting and Extending	Appropriate
	(CORE) as a strategy for investigating linear	
	programming problems	
4	The discovery learning method is not used to investigate	Inappropriate
	derivatives in multiplication rules	
5	The STAD method as a strategy for investigating the	Appropriate
	average formula	
6	The discussion method is not used in explaining	Inappropriate
_	trigonometry	
7	The method used in matrix operations is lecture only,	Inappropriate
	there is no discussion or responsibility.	
8	Discovery Learning as a strategy for investigating	Appropriate
0	graphs of quadratic functions	
9	The PBL learning model is not used in the learning	Inappropriate
1.0	process regarding linear equations with one variable	
10	Cooperative Learning Type Talking Chips as a strategy	Appropriate
	for investigating quadratic equations	
11	The PBL model as a strategy for investigating direct	Appropriate
	proportion	

A subject is categorized as appropriate if the learning model or method applied is in accordance with the previously prepared teaching module. Based on Table 6, the percentage of suitability between the instructional model chosen by the subjects and what was implemented is 54.5%. This indicates that more than half of the subjects already possess good pedagogical skills.

Technological Content Knowledge (3,47/Moderate Level)

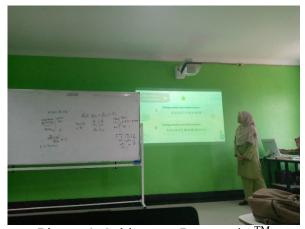

The suitability between the subjects' ability to integrate technology with the material to be taught needs further description. Generally, the subjects use PowerPointTM to explain the material learning. However, in some cases, the PowerPointTM slides designed have not facilitated students' understanding. This is because some subjects still merely read what is written on the slides. Additionally, at the beginning of the sessions, some subjects merely downloaded instructional videos from YouTubeTM or teaching materials from the internet. However, by the end of the sessions, the subjects had learned to create PowerPointTM presentations using their own voice and to analyze the material to be taught beforehand.

Table 7. Description of TPACK Framework Results for the TCK Aspect

Technology	Observation indicator	Results of Observation P4
		Results of Observation 14
Quizizz TM and Canva TM	Using PowerPoint TM to investigate the system of linear equations in two variables SPLDV	The material on Systems of Linear Equations in Two Variables (SPLDV) is covered in the PowerPoint TM presentation (appropriate).
PowerPoint TM and Maple TM	the solution process using properties of definite integrals.	The PowerPoint TM presentation includes key points of the concepts to be explained (appropriate).
GeoGebra TM and Quizizz TM	Using GeoGebra TM to investigate tangents to circles	Students don't seem to understand because the subject only reads what is on GeoGebra. Preferably, the focus should be on the blackboard, not the wall, so that it can be crossed out to explain important points that make it easier for students to understand. (inappropriate/improved)
PowerPoint TM and Kahoot TM (quiz)	Using PowerPoint to explain multiplication derivative material	In the PowerPoint TM displayed there is no explanation of the process of obtaining the derivative rule formula for multiplication in the form of u.v (inappropriate/improved)
Canva TM and Wordwall (quiz)	Using PowerPoint TM to explain measure of central tendency material	The subject does not write on the board as additional explanation or explanation of the concept being taught, only explains from slide (appropriate)
Canva TM Presentation Application	Using PowerPoint TM to explain trigonometry material	There is a typing error in the PowerPoint TM used (inappropriate/improved)
Canva TM Presentation Application and Bamboozle (quiz)	Using PowerPoint TM to explain matrix material	When writing the symbols on the PowerPoint TM slide, the equal sign is left behind (inappropriate/improved)
Microsoft mathematics TM	Using Microsoft mathematics TM to solve quadratic function and logarithm problems	Learning to use Microsoft Mathematics (calculator) has begun to be meaningful with theoretical explanations first and then practical exercises using the software (appropriate).
GeoGebra TM	Using GeoGebra TM to identify elements of flat-sided geometric figures and linear equations in one variable.	Subjects sit in front of a laptop while conducting a learning evaluation. (inappropriate/improved)
	PowerPoint TM and Maple TM GeoGebra TM and Quizizz TM PowerPoint TM and Kahoot TM (quiz) Canva TM and Wordwall (quiz) Canva TM Presentation Application Canva TM Presentation Application and Bamboozle (quiz) Microsoft mathematics TM	Canva TM investigate the system of linear equations in two variables SPLDV PowerPoint TM and Maple TM Using Maple TM to investigate the solution process using properties of definite integrals. GeoGebra TM and Quizizz TM Using PowerPoint to explain multiplication derivative material Canva TM and Wordwall (quiz) Wordwall (quiz) measure of central tendency material Canva TM Using PowerPoint TM to explain measure of central tendency material Canva TM Using PowerPoint TM to explain trigonometry material Canva TM Using PowerPoint TM to explain trigonometry material Canva TM Using PowerPoint TM to explain trigonometry material Canva TM Using PowerPoint TM to explain trigonometry material Canva TM Using PowerPoint TM to explain matrix material Application Application Application and Bamboozle (quiz) Microsoft Using Microsoft mathematics TM to solve quadratic function and logarithm problems GeoGebra TM Using GeoGebra TM to identify elements of flat-sided geometric figures and linear

10	Website and Quizizz TM (quiz)	Use material on the website to explain quadratic equations	The slide contains images that show the application of the concept of quadratic equations in everyday life, such as the shape of the trajectory of a kicked ball. (appropriate)
11	Quizziz TM , Canva TM Presentation Application and YouTube TM		The subject is seen reading out what is in the PowerPoint TM only. (inappropriate/improved)

Based on Table 7, it can be seen that the subjects have used technology in various mathematical materials. However, there were still four mistakes that could be made to improve further, such as typing errors on the slides displayed (6,7), only reading the material on the slides with a sitting gesture (9,11), slides only containing formulas without explanation of the discovery process a concept (4), as well as the lack of additional explanations using a whiteboard when using GeoGebraTM or PowerPointTM (3). In other words, the percentage of subjects who need to improve the TCK aspect is around 54.5%.

Picture 1. Subject use PowerpointTM

Figure 1 shows an example of one of the subjects explaining the material using a power point slide designed on CanvaTM. In addition to the use of PowerPointTM, there is also a whiteboard next to it for working on practice questions.

Technological Pedagogical Knowledge (3,27/Moderate Level)

This aspect guides the subjects to integrate technology into lesson planning, teaching execution, and evaluation of mathematics instruction in a manner that aligns with the students' conditions. At the end of the lesson, the subjects conducted an evaluation by administering a quiz using an application and sharing the created link. The quiz administration excited the students, especially for questions discussed individually, compared to discussions held after completing all the questions.

Table 8. Description of TPACK Framework Results for the TPK Aspect

Subject	Technology	Observation indicator	Results of Observation P4
number	m f		m.
1	Quizizz TM and Canva TM Presentation Application	Quizizz TM and PowerPoint TM to facilitate PBL	PowerPoint TM helps the subject explain the material because it contains important points, while evaluation uses quizzes
2	Maple TM	Maple TM to facilitate demonstration methods	Collaboration between demonstration methods and ICT
3	GeoGebra TM and Quizizz TM	GeoGebra TM and Quizizz TM to facilitate CORE	GeoGebra makes students understand concepts better. Collaborating the CORE model with ICT also uses Google Forms.
4	PowerPoint TM and Kahoot TM (quiz)	PowerPoint TM and Kahoot TM (quiz) to facilitate discovery learning	Collaboration between discovery learning methods and ICT
5	Canva TM Presentation Application and wordwall TM (quiz)	$\begin{array}{ccc} Powerpoint^{TM} & and \\ Wordwall^{TM} & (quizzes) & to \\ facilitate STAD & & \\ \end{array}$	Technology helps subjects appreciate every correct answer so that students are enthusiastic about learning.
6	Canva Presentation Application TM	PowerPoint TM to facilitate discussion methods	Students easily lose focus on what the subject shows
7	Canva Presentation Application TM and Bamboozle TM (quiz)	PowerPoint TM and Bamboozle TM (quiz) to facilitate leaturing, discussions and questions & answers method	The subject uses PowerPoint TM to explain the material and Bamboozle quizzes as material for evaluation, the teacher's way of clarifying when there is doubt is using the lecture method but there is no discussion. Apart from that, appreciation for students who answered a lot is recorded in the system well.
8	Microsoft mathematics TM	Microsoft mathematics TM to facilitate discovery learning	The subject interacts with the students, if no one answers, they point directly
9	GeoGebra TM	GeoGebra TM to facilitate PBL	Collaboration between PBL and ICT models
10	Website and Quizizz TM (quiz)	Website and quizizz (quiz) to facilitate Talking Chips Type Cooperative Learning	Collaboration between the CORE and ICT models
11	Quiz (Quizziz TM), Canva Presentation Application TM , YouTube TM	Quiz (Quizziz TM), PowerPoint TM , Youtube TM videos to facilitate PBL	Collaboration between PBL and ICT models is still lacking

Based on Table 8, it can be seen that in general subjects carry out evaluations by giving quizzes at the end of the lesson using the $Quizizz^{TM}$, $Kahoot^{TM}$, $Wordwall^{TM}$ and $Bamboozle^{TM}$.

Technological Pedagogical Content Knowledge (3,33/Moderate Level)

The subject's abilities in the TPCK aspect can be seen in Table 9 below.

Table 9. Description of TPACK Framework Results for the TPCK Aspect

Subject number	Technology	Learning material	Learning models/	Observation indicator	Results of Observation P4
1	Quizizz TM and Canva TM	Set	Problem Based Learning	Integration of Quizizz TM and PowerPoint TM	The subject begins the lesson by asking challenging questions such

				m) (
	Presentation			(Canva TM) with PBL	as whether two-year-old
	Application			strategies to teach set	students are in the empty
				content	group?
2	PowerPoint TM	Integral	Demonstrat	PowerPoint TM and	The subject is more
	and Maple TM		ion	maple integration with	dominant in ICT (maple
				to teach Integral content	applications), collaboration
					in use still feels very
					limited,
3	GeoGebra TM	Linear	Connecting	GeoGebra TM and	The use of PowerPoint TM in
	and Quizizz TM	Program	,	Quizizz TM integration	explaining graphics is very
			Organizing	with to teach linear	effective. However, the
			, reflecting	programming content	subject should also explain
			and		the graph manually.
			Extending		Collaboration with
			(CORE)		pedagogy is also starting to
					get better
4	PowerPoint TM	Derivative	Discovery	PowerPoint TM and	Evaluation of learning using
	and Kahoot TM		Learning	Kahoot TM integration	Kahoot TM
	(quiz)			with to teach derivative	
				content	
5	Canva TM	Central	STAD	PowerPoint TM and	Subjects did not utilize
	Presentation	tendency		wordwall TM integration	existing facilities because
	Application and			with to teach central	explaining the material was
	wordwall TM			tendency content	done orally without using a
	(quiz)				whiteboard. It should be
					able to be written on
					PowerPoint TM
6	Canva TM	Trigonomet	Discussion	PowerPoint TM	Collaboration between the
	Presentation	ry		integration with to	three aspects of TPACK is
	Application			teach content	still lacking
7	Canva TM	Matrix	Leatoring,	Integration with to	Collaboration between the
	Presentation		Discussion,	teach trigonometry	three aspects of TPACK is
	Application and		question &	content	still lacking. However,
	Bamboozle TM		answer		when the quiz was given,
	(quiz)		method		the students became
					enthusiastic again.
8	Microsoft	Quadratic	Discovery	Integration of Microsoft	The subject initially had
	mathematics TM	function	Learning	Math with to teach	problems sharing the
				quadratic function	screen, but this was quickly
				content	overcome. Use of Quiz
					whizzer TM at the end of the
0	G G 1 TM		DD.	G G I TM	lesson
9	GeoGebra TM	One	PBL	GeoGebra TM	There is a content match
		variable		integration with to	with technology, but
		linear		teach content Linear	pedagogical content is still
		equation		equations in one	low, because the subject
				variable	does not seem to dominate
10	Wahaita 1	Oug drat! -	Coomanatia	Integration of1-	the class Collaboration between
10	Website and	Quadratic	Cooperativ	Integration of website and Quizizz TM with to	
	quizizz TM (quiz)	equation	e Learning:		pedagogical abilities,
			Talking	teach quadratic	mastery of teaching
			Chips	equation content	materials and use of
					technology begins to
					balance, evaluation at the
					end of learning by giving
1 1	Oniz	Direct	Duolelans	Intermetion of Oni-i-	Quizizz TM .
11	Quiz	Direct	Problem Based	Integration of Quizizz and PowerPoint TM with	The subject does not master
	(quizziz TM), Canva TM	proportion			the concept, so every time
			Learning	to teach value	they look at the PowerPoint
	Presentation			comparison content	

Application, slides and the whiteboard, YoutubeTM the students are ignored.

Discussion

The average questionnaire score for TK aspect was 3.47 (medium category). The type of technology used is mathematics software, namely MapleTM, GeoGebraTM, PowerPointTM, CanvaTM, Microsoft MathematicsTM, YouTubeTM Video and Website. CanvaTM is an application that can create attractive visual learning media designs (Kharissidqi & Firmansyah, 2022). Four types of quiz applications are: QuizizzTM, KahootTM, WordwallTM and BamboozleTM. Each of the four quiz applications has its own advantages and disadvantages. The ability of prospective teacher students to select and integrate technology in learning influences the impact of using that technology. This is in line with Gentile & Pisanu, (2013) which states that to evaluate the impact of technologies should be considered the following levels of analysis: a) technologies (devices and software); b) school (learning environments, principal leadership styles); c) teacher (digital skills, use versus integration of technologies); d) student (learning outcomes, educational outcomes.

Furthermore, the average questionnaire score for the CK aspect was 3.44 (medium category). The results of this study are in line with research conducted by Purwoko (2017) which states that the CK abilities of prospective mathematics teacher students are predominantly at good and strong level. As many as 36.3% of students have not mastered the facts, concepts, procedures of a topic in the mathematics learning process. There are several concepts that student teachers have not yet mastered. This will have an impact on their explanation skills in front of the class. Teachers with strong conceptual understanding tend to be more effective in explaining concepts and implementing teaching strategies that support student understanding.

The average questionnaire score for the PK aspect is 3.36 (medium category). The learning models chosen by student teachers are the Problem Based Learning Model, Demonstration Method, Talking Chips STAD Cooperative Learning Model, CORE (Connecting, Organizing, Reflecting and Extending) Learning Model, Discussion Method, Lecture Method and Question and Answer Method. The average questionnaire score for the PCK aspect is 3.31 (medium category). The percentage of suitability of the learning model chosen by the subject to that implemented was 54.5% or as many as six students.

The average questionnaire score for the TCK aspect is 3.47 (medium category). The percentage of subjects who need to improve the TCK aspect is around 54.5%. This shows that the technology used is still not integrated into the learning process. Subjects copy full material from the internet without understanding. This is in line with research conducted by Satriawati et al., (2022) which states that the videos used by students are videos that are already available on the internet, only a few students are able to make PowerPointTM. The available evidence on the relationship between teachers' pedagogical beliefs and their uses of technology (Tondeur et al., 2017).

The average questionnaire score for the TPK aspect was 3.27 (medium category). In the learning process, prospective teacher students carry out evaluations by giving quizzes using an application dominated by QuizizzTM at the end of the lesson. In this aspect, there is a tendency for differences between the results of direct observation and the results of the questionnaire filled out by students. For example, the item "I can utilize available technologies as a learning aid" indicates a high rating (3.63); however, observations indicate that students' abilities are still lacking, indicating that students have much to learn, especially in the use of technology in the learning process to enhance the learning environment in mathematics.

Furthermore, the average questionnaire score for the TPCK aspect was 3.33 (medium category). In several aspects, differences can be seen between the results of questionnaires filled out by pre-service teacher students and the results of observations. Where the observation results tend to be lower than the questionnaire results. The integration of technology in mathematics learning by several subjects is still not optimal.

The TPACK abilities of pre-service teachers were low at the first meeting and increased to moderate by the last meeting. This contrasts with the questionnaire results, which indicated that students' TPACK abilities were moderate at the beginning. The findings of this study suggest efforts should be made to assess the alignment of students' responses and the challenges faced in the field by developing more flexible instruments. Based on the observations, generally, technology is used as a learning tool by the pre-service teachers, but not yet at the stage of developing mathematical concepts. One of the functions of technology in mathematics learning is developing conceptual understanding (Putrawangsa & Hasanah, 2018). Furthermore, educators could diversify technology integration in mathematics (Hidayat & Firmanti, 2024).

Conclusion

The distribution of TPACK abilities of pre-services teacher is overall in the medium category with an average questionnaire score of 3.38. The highest score is 3.47 for both aspects of Technological Knowledge and Technological Content Knowledge. The lowest score is 3.27 for aspect of Technological Pedagogical Knowledge. On the other hand, there are differences in the results of questionnaires filled out by students directly and the results of observations. The ability scores of student's TPACK from observations tend to be lower than the questionnaire results. The results of this research show how important observations are in assessing the suitability of students' answers and the obstacles that occur in the field.

The limitation of this study is the small sample size so that the findings cannot be generalized to other groups. It is hoped that further research will use a larger sample. In addition, the evidence used to evaluate pedagogical content knowledge (PCK) is too limited. It is difficult to observe student's ability to make a relationship between learning theories and the mathematics content that supports 4C skills.

References

- Amrina, Z., Anwar, V. N., Alvino, J., & Sari, S. G. (2022). Analisis Technological Pedagogical Content Knowledge Terhadap Kemampuan Menyusun Perangkat Pembelajaran Matematika Daring Calon Guru SD. *Jurnal Cendekia: Jurnal Pendidikan Matematika*, 6(1), 1069–1079. https://doi.org/10.31004/cendekia.v6i1.1313
- Blegur, J., Ma'mun, A., Mahendra, A., Mahardika, I. M. S., & Tlonaen, Z. A. (2023). Bibliometric analysis of micro-teaching model research trends in 2013-2023. *Journal of Innovation in Educational and Cultural Research*, 4(3), 523–533. https://doi.org/10.46843/jiecr.v4i3.782
- Faradilla, H., & Putra, A. (2024). Technological, Pedagogical, and Content Knowledge (TPACK) Mahasiswa Tahun Ketiga Calon Guru Matematika. *Jurnal Silogisme : Kajian Ilmu Matematika Dan Pembelajarannya*, 9(1), 27–41.
- Farida, N., & Kusumawati, F. P. (2024). Analisis Kemampuan TPACK Calon Guru melalui Microteaching Lesson Study. *Edukatif: Jurnal Ilmu Pendidikan*, 6(5), 5767–5773. https://doi.org/10.31004/edukatif.v6i5.7511
- Gentile, M., & Pisanu, F. (2013). Integrating technology and teaching with Learning Solutions. Learning & Teaching with Media & Technology Conference Proceedings, June 2013, 272–286.

- Herizal, H., Nuraina, N., Rohantizani, R., & Marhami, M. (2022). Profil TPACK Mahasiswa Calon Guru Matematika dalam Menyongsong Pembelajaran Abad 21. *JISIP (Jurnal Ilmu Sosial Dan Pendidikan)*, 6(1), 1847–1857. https://doi.org/10.58258/jisip.v6i1.2665
- Hidayat, A., & Firmanti, P. (2024). Navigating the tech frontier: a systematic review of technology integration in mathematics education. *Cogent Education*, 11(1). https://doi.org/10.1080/2331186X.2024.2373559
- Jenita, Harefa, A. T., Pebriani, E., Hanafiah, Rukiyanto, B. A., & Sabur, F. (2023). Pemanfaatan Teknologi Dalam Menunjang Pembelajaran: Pelatihan Interaktif Dalam Meningkatkan Kualitas Pendidikan. *Community Development Journal*, 4(6), 13121–13129.
- Kharissidqi, M. T., & Firmansyah, V. W. (2022). Aplikasi Canva Sebagai Media Pembelajaran Yang Efektif. *Indonesian Journal Of Education and Humanity*, *2*(4), 108–113.
- Koehler, M. J., Mishra, P., Akcaoglu, M., & Rosenberg, J. M. (2013). The Technological Pedagogical Content Knowledge Framework for Teachers and Teacher Educators. *ICT Integrated Teacher Mducation Models*, *December*, 1–8.
- Li, M., Vale, C., Tan, H., & Blannin, J. (2024). A systematic review of TPACK research in primary mathematics education. In *Mathematics Education Research Journal* (Issue 0123456789). Springer Netherlands. https://doi.org/10.1007/s13394-024-00491-3
- Meisuri, M., Nuswantoro, P., Mardikawati, B., & Judijanto, L. (2023). Technology Revolution in Learning: Building the Future of Education. *Journal of Social Science Utilizing Technology*, *I*(4), 214–226. https://doi.org/10.55849/jssut.v1i4.660
- Mukuka, A., & Alex, J. K. (2024). Review of research on microteaching in mathematics teacher education: Promises and challenges. *Eurasia Journal of Mathematics, Science and Technology Education*, 20(1), 1–15. https://doi.org/10.29333/ejmste/13941
- Murtiyasa, B., & Atikah, M. D. (2021). Kemampuan Tpack Mahasiswa Calon Guru Matematika Pada Mata Kuliah Praktikum Pembuatan Alat Peraga Matematika. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika*, 10(4), 2577. https://doi.org/10.24127/ajpm.v10i4.4351
- Nuangchalerm, P. (2020). TPACK in ASEAN perspectives: Case study on thai pre-service teacher. *International Journal of Evaluation and Research in Education*, *9*(4), 993–999. https://doi.org/10.11591/ijere.v9i4.20700
- Oktaviana, E., & Yudha, C. B. (2022). Tecnological Pedagogical Content Knowledge (TPACK) Dalam Pembelajaran Abad Ke-21. *Social, Humanities, and Educational Studies* (SHEs): Conference Series, 5(2), 57. https://doi.org/10.20961/shes.v5i2.58305
- Omoso, E., & Odindo, F. (2020). TPACK in Teacher Education: Using Pre-Service Teachers' Self-Reported TPACK To Improve Pedagogic Practice. *International Journal of Education and Research*, 8(5), 125–138.
- Purwoko, R. Y. (2017). Analisis Kemampuan Content Knowledge Mahasiswa Calon Guru Matematika pada Praktek Pembelajaran Mikro. Universitas Negeri Yogyakarta. *Jurnal Pendidikan Surya Edukasi (JPSE)*, 3, 55–65.
- Putrawangsa, S., & Hasanah, U. (2018). Integrasi Teknologi Digital Dalam Pembelajaran Di Era Industri 4.0. *Jurnal Tatsqif*, 16(1), 42–54. https://doi.org/10.20414/jtq.v16i1.203
- Rohmitawati, R. (2018). The Implementation of TPACK (Technology, Pedagogy, and Content Knowledge) Framework on Indonesian Online Mathematics Teachers Training. *Southeast Asian Mathematics Education Journal*, 8(1), 61–68. https://doi.org/10.46517/seamej.v8i1.64
- Saliman, Supardi, & Rosardi, R. G. (2017). Pemahaman Mahasiswa Peserta Pengajaran Mikro terhadap Kurikulum 2013 di Jurusan Pendidikan IPS, FIS, UNY. *JIPSINDO*, 4(1), 58–77.
- Sarifa, Z., Wardani, S., Sulistyaningsih, T., & Purniawati, H. (2021). Penerapan Model Talking Chips Untuk Mengukur Hasil Belajar Dan Kecerdasan Interpersonal. *Jurnal Inovasi*

- Pendidikan Kimia, 15(2), 2885–2896. https://doi.org/10.15294/jipk.v15i2.17464
- Satriawati, G., Mas'ud, A., Dwirahayu, G., Dahlan, J. A., & Cahya, E. (2022). Analisis Kemampuan Technological Pedagogical Content Knowledge (TPACK) Mahasiswa Program Studi Pendidikan Matematika Pada Mata Kuliah Microteaching Di Masa Pandemi Covid 19. FIBONACCI: Jurnal Pendidikan Matematika Dan Matematika, 8(1), 73. https://doi.org/10.24853/fbc.8.1.73-84
- Schmidt, D. A., Thompson, A. D., Koehler, M. J., & Shin, T. S. (2014). CIE 2014 44th International Conference on Computers and Industrial Engineering and IMSS 2014 9th International Symposium on Intelligent Manufacturing and Service Systems, Joint International Symposium on "The Social Impacts of Developments in Informat, 42(2), 2531p.
- Sholeh, muh ibnu, & Efendi, N. (2023). Integrasi Teknologi Dalam Manajemen Pendidikan Islam: Meningkatkan Kinerja Guru di Era Digital. *Jurnal Tinta*, *5*(2), 104–126.
- Siregar, R. K. (2021). Belajar Micro Teaching melalui Pembelajaran Daring. *Ideas: Jurnal Pendidikan, Sosial, Dan Budaya*, 7(3), 11. https://doi.org/10.32884/ideas.v7i3.395
- Sugiyono. (2014). *Metode penelitian pendidikan: Pendekatan kuantitatif, kualitatif, dan R&D.* Bandung: Alfabeta
- Tamur, M., Ndiung, S., Weinhandl, R., Wijaya, T. T., Jehadus, E., & Sennen, E. (2023). Meta-Analysis of Computer-Based Mathematics Learning in the Last Decade Scopus Database: Trends and Implications. *Infinity Journal*, 12(1), 101–116. https://doi.org/10.22460/infinity.v12i1.p101-116
- Tondeur, J., van Braak, J., Ertmer, P. A., & Ottenbreit-Leftwich, A. (2017). Understanding the relationship between teachers' pedagogical beliefs and technology use in education: a systematic review of qualitative evidence. *Educational Technology Research and Development*, 65(3), 555–575. https://doi.org/10.1007/s11423-016-9481-2

J	service Teachers in I	- W. W.	,,	Ü