Phenomenological Hermeneutic Study on the Epistemological Obstacles of High School Students in Solving Combinatorics Problems
Abstract
This study employs a hermeneutic phenomenological approach to explore students' epistemological obstacles in solving permutation and combination problems, with the goal of supporting the development of more effective teaching materials. The research involved 24 12th-grade high school students (14 males and 10 females) and used qualitative methods. Data were collected through five diagnostic essay questions and semi-structured interviews to identify epistemological obstacles in combinatorics. Students’ written responses and interview transcripts were analyzed and interpreted to uncover the underlying obstacles. The findings revealed several epistemological obstacles: (1) students were unable to identify all possible answers from a given problem; (2) students could not differentiate between problems requiring the concept of permutation and those requiring the concept of combination; (3) students struggled to solve problems that differed from the example problems provided; and (4) challenges in formulating a complete solution when faced with multiple conditions, despite being able to calculate partial results. These insights suggest that teachers and future researchers should consider students' epistemological obstacles when designing instructional materials, particularly for topics in combinatorics such as permutations and combinations. Developing learning resources based on these findings may enhance conceptual understanding and problem-solving skills among students.
Keywords
Full Text:
PDFReferences
Aiyub, A., Suryadi, D., Fatimah, S., Kusnandi, K., & Abidin, Z. (2024). Investigation of Students' Mathematical Thinking Processes in Solving Non-Routine Number Pattern Problems: A Hermeneutics Phenomenological Study. Mathematics Teaching Research Journal, 16(1), 54-78. https://files.eric.ed.gov/fulltext/EJ1427415.pdf
Astuti, R. (2017). Analisis Learning obstacles Mahasiswa dalam mempelajari materi Kombinatorial. JURNAL e-DuMath, 3(1), 56-64. https://doi.org/10.26638/je.284.2064
Batanero, C., Navarro-Pelayo, V., & Godino, J. D. (1997). Effect of the implicit combinatorial model on combinatorial reasoning in secondary school pupils. Educational Studies in Mathematics, 32(2), 181-199. https://doi.org/10.1023/A:1002954428327
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn (Vol. 11). Washington, DC: National academy press. https://www.csun.edu/~SB4310/How%20People%20Learn.pdf
Brousseau, G. (2002). Theory of didactical situations in mathematics: Didactique des mathématiques, 19, 1970–1990. Springer Science & Business Media.
Cresswell, J. (2013). Qualitative inquiry & research design: Choosing among five approaches. United Kingdom : Sage Publications
Dahlberg, H., & Dahlberg, K. (2020). Phenomenology of science and the art of radical questioning. Qualitative Inquiry, 26(7), 889-896. https://doi.org/10.1177/10778004198977
Desjarlais, R., & Throop, C. J. (2011). Phenomenological approaches in anthropology. Annual Review of Anthropology, 40(1), 87–102. https://doi.org/10.1146/annurev-anthro-092010-153345
Dwinata, A., & Ramadhona, R. (2018). Analisis Kesalahan Siswa Dalam Pemecahan Problematika Kaidah Pencacahan Titik Sampel. Jurnal Gantang, 3(2), 117-126. https://doi.org/10.31629/jg.v3i2.479
Eizenberg, M. M., & Zaslavsky, O. (2004). Students’ verification strategies for combinatorial problems. Mathematical Thinking and Learning, 6(1), 15–36. https://doi.org/10.1207/s15327833mtl0601_2
English, L. D. (2005). Combinatorics and the development of children's combinatorial reasoning. In Exploring probability in school, 121-141. Springer, Boston, MA. https://doi.org/10.1007/0-387-24530-8_6
English, L. D., & Warren, E. A. (1995). General Reasoning Processes and Elementary Algebraic Understanding: Implications for Initial Instruction. Focus on Learning Problems in Mathematics, 17(4), 1-19. https://eric.ed.gov/?id=EJ526526
Hasan, A., & Pardjono, P. (2019). The correlation of higher order thinking skills and work readiness of vocational high school students. Jurnal Pendidikan Teknologi dan Kejuruan, 25(1), 52-61. https://doi.org/10.21831/jptk.v25i1.19118
Husserl, E. (1970). Syllabus of a Course of Four Lectures on “Phenomenological Method and Phenomenological Philosophy”. Journal of the British Society for Phenomenology, 1(1), 18-23. https://doi.org/10.1080/00071773.1970.11006095
Isnawan, M. G., Alsulami, N. M., Rusmayadi, M., Samsuriadi, S., Sudirman, S., & Yanuarto, W. N. (2023). Analysis of student learning barriers in fractional multiplication: A hermeneutics phenomenology study in higher education. Edumatica: Jurnal Pendidikan Matematika, 13(01), 11-22. https://doi.org/10.22437/edumatica.v13i01.24190
Isnawan, M. G., Suryadi, D., & Turmudi, T. (2022). How secondary students develop the meaning of fractions? A hermeneutic phenomenological study. Beta: Jurnal Tadris Matematika, 15(1), 1-19. https://doi.org/10.20414/betajtm.v15i1.496
Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational technology research and development, 48(4), 63-85. https://doi.org/10.1007/BF02300500
Kapur, J. (1970). Combinatorial Analysis and School Mathematics. Educational Studies in Mathematics, 3(1), 111-127. Retrieved June 18, 2021, from http://www.jstor.org/stable/3481871
Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. Mathematical thinking and learning, 5(2-3), 157-189. https://doi.org/10.1080/10986065.2003.9679998
Lockwood, E. (2011). Student connections among counting problems: an exploration using actor-oriented transfer. Educational Studies in Mathematics, 78(3), 307. https://doi.org/10.1007/s10649-011-9320-7
Lockwood, E. (2013). A model of students’ combinatorial thinking. The Journal of Mathematical Behavior, 32(2), 251-265. https://doi.org/10.1016/j.jmathb.2013.02.008
Lockwood, E. (2015). The strategy of solving smaller, similar problems in the context of combinatorial enumeration. International Journal of Research in Undergraduate Mathematics Education, 1(3), 339-362. https://doi.org/10.1007/s40753-015-0016-8
Lockwood, E., & Gibson, B. R. (2016). Combinatorial tasks and outcome listing: Examining productive listing among undergraduate students. Educational Studies in Mathematics, 91(2), 247-270. https://doi.org/10.1007/s10649-015-9664-5
Maher, C. A., Powell, A. B., & Uptegrove, E. B. (Eds.). (2011). Combinatorics and reasoning: Representing, justifying and building isomorphisms (Vol. 47). New York : Springer Science & Business Media. http://dx.doi.org/10.1007/978-94-007-0615-6
Mahyudi (2016). Proses Beprikir Probabilistik Siswa SMA dalam Mengkonstruksi Konsep Permutasi dan Kombinasi. Edumatica, 7(1), 55-63. https://doi.org/10.36085/math-umb.edu.v3i3.1441
Marticion, J. A. (2021). Mathematical anxiety as predictor of learning motivation strategies. Southeast Asian Mathematics Education Journal, 11(1), 1-12. https://doi.org/10.46517/seamej.v11i1.123
McGalliard III, W. A. (2012). Constructing sample space with combinatorial reasoning: A mixed methods study. The University of North Carolina at Greensboro.
Meika, I., & Suryadi, D. (2018, January). Students’ errors in solving combinatorics problems observed from the characteristics of RME modeling. In Journal of Physics: Conference Series (Vol. 948, No. 1, p. 012060). IOP Publishing. http://doi.org/10.1088/1742-6596/948/1/012060
Musyrifah, E., Suryadi, D., Cahya, E., & Dahlan, J. A. (2024). Analysis Prospective Mathematics Teachers’ Lesson Planning: A Praxeological-Didactical Theory. Southeast Asian Mathematics Education Journal, 14(2), 83-100. https://doi.org/10.46517/seamej.v14i2.431
Nopriana, T., Hermanand, T., Suryadi, D., & Martadiputra, B. A. P. (2023, August). Combinatorics problems for undergraduate students: Identification of epistemological obstacles and model of combinatorial thinking. In AIP Conference Proceedings, 2811(1). https://doi.org/10.1063/5.0142261
Rahayuningsih, S. (2016). Meminimalisir Kesalahan Konsep Kombinatorik melalui Pembelajaran Pace. Jurnal Likhitaprajna, 18(2), 67-78. https://elitabmas.wisnuwardhana.ac.id/webmin/assets/uploads/lj/LJ202106171623871694146.pdf
Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of educational psychology, 93(2), 346. https://doi.org/10.1037/0022-0663.93.2.346
Rizqika, P., Hobri, H., & Murtikusuma, R. P. (2019). Pengembangan Perangkat Pembelajaran Berbasis Problem Based Learning dan Jumping Task pada Pokok Bahasan Kaidah Pencacahan untuk Siswa SMA. KadikmA, 10(1), 13-24. https://doi.org/10.19184/kdma.v10i1.11654
Rochmadi, S. (2016). Industry partnerships learning models for surveying and mapping of vocational high schools. Jurnal Pendidikan Teknologi dan Kejuruan, 23(2), 210-225.
Rojuli, S., & Rahayu, A. (2017). Observational Learning on Industry Work Practices toward Job Readiness. Educational Research and Reviews, 12(9), 554-558. https://doi.org/10.5897/ERR2017.3230
Suryadi, D. (2013). Didactical design research (DDR) dalam pengembangan pembelajaran matematika. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika, 1, 3-12.
Suryadi, D. (2019a). Landasan Filosofis Penelitian Desain Didaktis (DDR). Pusat Pengembangan DDR Indonesia.
Suryadi, D (2019b). Penelitian Desain Didaktis (DDR) dan Implementasinya. Bandung: Gapura Press.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285. https://doi.org/10.1016/0364-0213(88)90023-7
Van Manen, M. (1990). Researching lived experience: Human science for an action sensitive pedagogy. Routledge. https://doi.org/10.4324/9781315421056
Verschaffel, L., De Corte, E., Lasure, S., Van Vaerenbergh, G., Bogaerts, H., & Ratinckx, E. (1999). Learning to solve mathematical application problems: A design experiment with fifth graders. Mathematical thinking and learning, 1(3), 195-229. https://doi.org/10.1207/s15327833mtl0103_2
Wahyuniar, L. S., & Widyawati, S. (2017). Proses Berpikir Mahasiswa Dalam Menyelesaikan Soal Kombinatorial Berdasarkan Kecerdasan Logis Matematis. NUMERICAL: Jurnal Matematika dan Pendidikan Matematika, 1(2), 207-233. https://doi.org/10.25217/numerical.v1i2.177
Wasserman, N. H. (2013). Exploring Teachers’categorizations For And Conceptions Of Combinatorial Problems. In Proceedings of the 40th Annual Meeting of the Research Council on Mathematics Learning (p. 145). Retrieved from https://www.tc.columbia.edu/faculty/nhw2108/faculty-profile/files/2013-RCML-Proceeding.pdf
DOI: https://doi.org/10.46517/seamej.v15i1.468
Refbacks
- There are currently no refbacks.
Indexed by:
Southeast Asian Mathematics Education Journal
SEAMEO Regional Centre for QITEP in Mathematics
Jl. Kaliurang Km 6, Sambisari, Condongcatur, Depok, Sleman
Yogyakarta, Indonesia
Telp. +62 274 889955
Email: seamej@qitepinmath.org
p-ISSN: 2089-4716 | e-ISSN: 2721-8546
Southeast Asian Mathematics Education Journal is licensed under a Creative Commons Attribution 4.0 International License
View My Stats
Supported by: